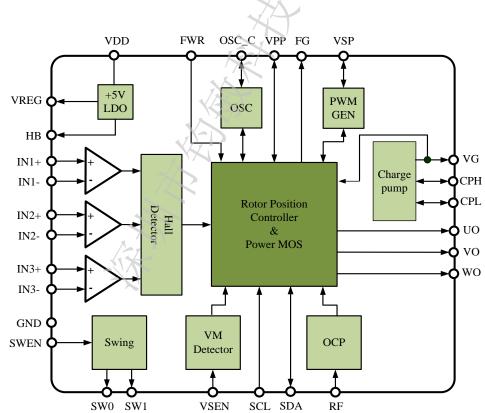


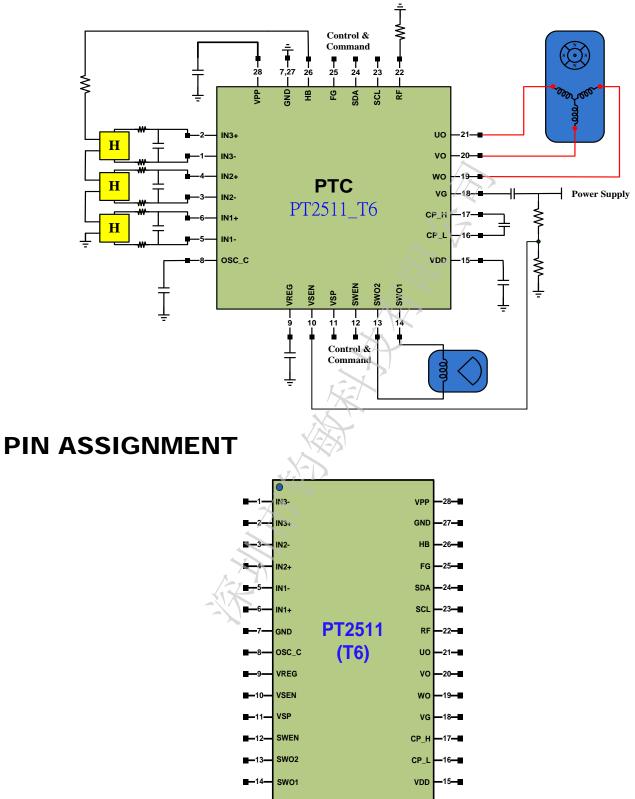
DESCRIPTION


The PT2511 is a three-phase, hall sensor sinusoidal brushless DC motor driver with integrated power MOSFETs, which can provide continuous drive current up to 1.5A. The three-phase control is based on sine wave driving scheme and it is designed to reduce electrical audible noise in motor phase commutation. The integrated charge pump of the device boosts VDD internally and fully enhances the high-side MOSFETs. On-chip +5V LDO provide voltage for logic and analog circuits operation. The PT2511 has internal TSD function protection. The package of PT2511 is HTSSOP28.

FEATURES

- Hall sensor sinusoidal control for 3-phase BLDC
- Current limit function
- Drive current: 1.5 A continuous
- Thermal shutdown(TSD) protection
- Motor lock protection
- Forward/Reverse control with FWR pin
- PWM or DC input for speed control
- FG output for rotation speed
- Support Hall element and Hall sensor
- I2C interface for parameter setting and write to internal OTP,

APPLICATIONS


- Three-phase BLDC motor
- Fan application

BLOCK DIAGRAM

APPLICATION BLOCK DIAGRAM

PIN DESCRIPTION

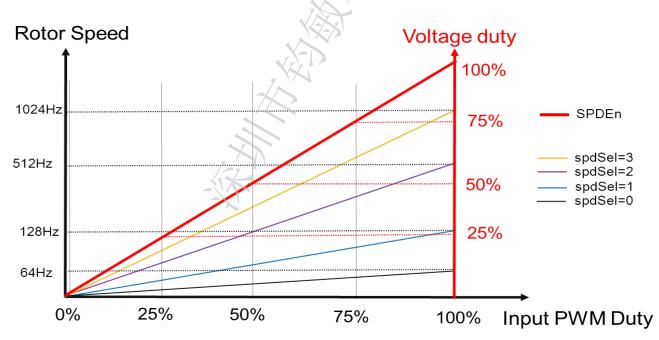
Pin Name	I/O/P	Description	Pin No.
IN3-	I	Hall element 3 input-	1
IN3+	I	Hall element 3 input+	2
IN2-	I	Hall element 2 input-	3
IN2+	I	Hall element 2 input+	4
IN1-	I	Hall element 1 input-	5
IN1+	I	Hall element 1 input+	6
GND	Р	Signal ground	7,27
OSC_C	Ι	Connect to external capacitor for startup step setting	8
VREG	0	+5V LDO output	9
VSEN	I	Connect to voltage divider of VDD for voltage sensing.	10
VSP	I	DC or PWM input for speed control	11
SWEN	I	Swing head enable control; "1" = start motor	12
SWO2	I/O	Swing motor control – full-bridge output 2	13
SWO1	I/O	Swing motor control - full-bridge output 1	14
VDD	Р	VDD supply input	15
CP_L	I/O	Charge pump pin, use a ceramic capacitor between CP_H and CP_L	16
CP_H	I/O	Charge pump pin, use a ceramic capacitor between CP_H and CP_L	17
VG	Р	Charge pump output	18
WO	0	W phase signal output	19
VO	0	V phase signal output	20
UO	0	U phase signal output	21
RF		Current limit voltage sensing	22
SCL		Serial clock input - I2C control interface	23
SDA	1/0	Serial data input/output - I2C control interface	24
FG	0	Motor rotation speed indicator, logic level output	25
НВ	0	Controlled +5V output for Hall sensor bias	26
VPP	Р	High voltage power supply (7.5V) for programming OTP	28

FUNCTION DESCRIPTION

POWER SUPPLY

PT2511 consumes very low current (<5mA) and build-in a 5V LDO for logic and analog circuits. The supply voltage for VDD range from +7V to +28V. For lower operation voltage in VDD, the VDD and VREG can be connected together.

PT2511 will detect VREG to reach 3V internally for avoiding instability on external power. A power good signal will send to logic circuit to start operation within 10ms.


Adding proper bypass capacitor(s) close to the sensible IC pins will reduce interference from motor systems or wires connection to improve chip performance.

PT2511 has an integrated charge pump to boost VDD for internal N-N type MOSFET driver.

PWM OR DC INPUT FOR SPEED CONTROL

The PT2511 has an external DC or PWM control input to change the motor speed. For PWM input, the HIGH voltage level needs to be greater than 3.3V(recommended to 3.5V) and the LOW voltage level need to be less than 0.5V(recommended to 0.3V). The PWM carrier frequency is recommended between 15 KHz to 25 KHz. For DC input, the DC control voltage should range from 0.5V to 3.3V.

Besides the traditional "duty control voltage" scheme, PT2511 also provide close loop speed control through the setting SpdEN in bit 3 of sub-address 0x39, as depicted in Figure 1. Four slope selections, SpdSel[1:0], are also provide for different motor application. With the help of RiseStep,FallStep1 and FallStep2 parameters, PT2511 provide stable speed regulation output.

Figure 1. PT2511 provide different speed control scheme

HALL SENSOR CONTROL SCHEME

The PT2511 control scheme is based on hall sensor information and produce sinusoidal excitation waveform. It benefits to provide accurate and silent (without electrical noise) driving control. Unlike the sensorless control scheme, hall sensor control provides smooth start-up without reverse rotation.

As shown in **Figure 2** and **Figure 3**, three hall sensors can be configured as 60° or 120° spacing through internal parameter, PhCode, 0: 60 degree spacing, 1: 120 degree spacing.

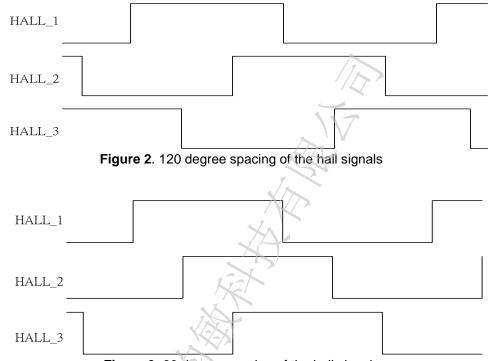
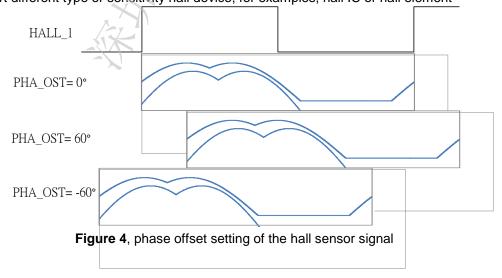



Figure 3. 60 degree spacing of the hall signals

The hall sensor has different sensitivity and layout distance from the rotor to cause phase offset. As shown in **Figure 4**, PT2511 can synchronize the phase offset related to HALL_U, range from -60 degree to 60 degree through internal parameters, SyncAng and RSyncAng. The phase offset is set individually for the forward or reverse rotation. PT2511 also support different type or sensitivity hall device, for examples, hall IC or hall element

PHASE ADVANCE SETTING

Due to the characteristics of inductance loading of stator winding, the phase of the shunt current may drift away as the rotor speed increase. The PT2511 provide automatic or manual adjustment through the setting PAAuto in address 0x30. It's easy for customer to achieve best efficiency in any circumstance. In the automatic setting, it provides sixteen curves PASlope and one maximum phase leading limitation MaxPA to choose.

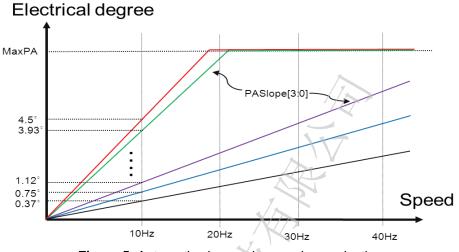


Figure 5. Automatic phase advance slope selection

Moreover, the best efficiency point may vary with the intensity of back EMF, shunt current, rotor speed and shunt inductance, etc. With the non-linear characteristic, the parameters of PAM10HZ~PAM150HZ help to adjust phase advance in individual rotation speed manually. The maximum manual adjustment speed is up to 150Hz. And the maximum phase leading limitation MaxPA is also applied in manual mode.

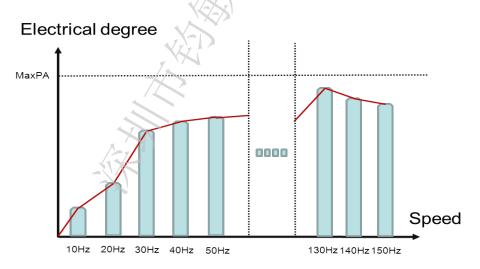
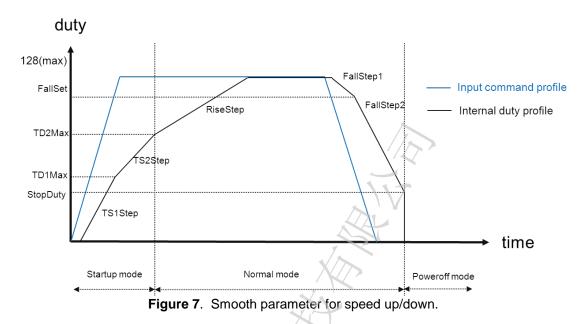



Figure 6. Manual phase advance setting according to speed

INPUT COMMAND PROFILE

PT2511 provide smooth speed up/down profile with different load as depicted in Figure 7. With the StopDuty setting, user can decide when to release excitation without audible noise.

CURRENT PROTECTION

The PT2511 has a two-level current protection function by using a sense resistor over RF pin and the sensed signal (V_{RF}) are related to motor current(Imotor) after low pass filter. When the V_{RF} exceeds V_{OCPL} , OCPL signal is triggered, PWM duty will reduce to keep V_{RF} under V_{OCPL} threshold. And if the V_{RF} exceed V_{OCPH} , OCPH signal is triggered, PWM turnoff and system go into the lock mode.

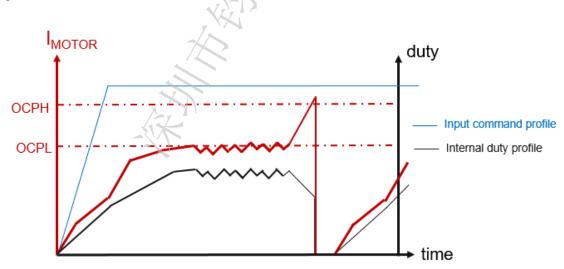


Figure 8. Two-stage over current protection

The OCPHFilter and OCPLFilter provide deglitch time period ranging from 0.4us to 0.4ms to make sure stable motor operation. Due to the different applications, PT2511 provide multi-level V_{OCPL}/V_{OCPH} setting through PRT_LVL register.

START UP & LOCK PROTECTION

The initial position information is provided by hall sensor. According to hall signal, PT2511 commutates motor and startup. The startup mode maximum duty is set by TD2Max, in other words, the maximum startup force for different motor application. Increasing / decreasing PWM duty, the motor speed can be accelerated/ decelerated. And the profile can be set from parameters.

If the controller did not detect the expected hall sensor signal, the state machine would go to the lock protection mode. PT2511 will wait a period and re-start again (the period and re-start times are set by internal parameter CTRise and CTFall) and the ExptNum exception number counter will plus 1. If the motor remained to be locked, and the counter number exceed the MaxExptNum setting, it would cause system fall into the dead lock status. System no longer start at this state, and the only way to restart the system is turning off then turning on the supply voltage.

OVER TEMPERATURE PROTECTION

PT2511 has an internal thermal shutdown (TSD) protection. It shuts down the chip for junction temperature larger than 155 °C and recovers operating conditions for junction temperature falls back to 115 °C.

UNDER VOLTAGE AND OVER VOLTAGE PORTECTION

When the voltage level of VSEN pin is greater than (VREG/2) or less than (VREG/2)- Δ V, the output power MOSFETs are shut down.

The voltage level of ΔV is set by OTP(One Time Programming) memory.

FG OUTPUT FOR SPEED INFORMATION

PT2511 has FG output to observe motor speed. When the rotor is running an electric cycle, the FG output toggles High to Low. So when calculating the rotation speed, it needs to take into account the pole numbers of the rotor. For example, if rotor is 8 poles (four pairs of NS), the motor run a lap will have 4 FG output. Motor speed is usually present in RPM (Revolutions per Minute), so the rotation speed of the simple formula is calculated as

RPM = FG x 120 / POLE, FG is frequency in Hz, "POLE" is numbers of rotor.

FG pin is a 5V logic output.

PT2511 provide different FG configuration for external device to access, as the **Figure 11** depicted. XOREn setting enable three times factor and FGDiv provide divided by 1,2,4,8 setting.

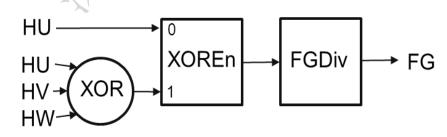


Figure 11. FG output configuration

FORWARD AND REVERSE SETTING

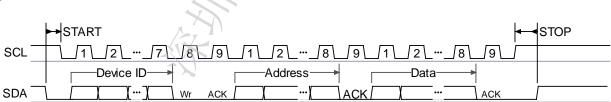
PT2511 can be set to forward or reverse rotation with internal parameter. If the rotation is switched, the motor will stop automatically and rotate with opposite direction. It is also suggested to control the motor speed by monitoring FG signal to optimize the reverse behavior, such as slow down profile or reverse waiting time.

UPWIND OR DOWNWIND STARTUP SETTING

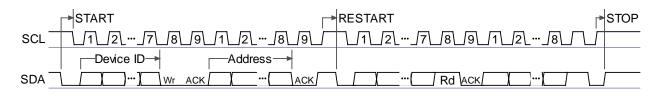
PT2511 can detect automatically if the motor operate in the upwind or downwind condition. To make sure the motor operate properly the PT2511 brake the motor in the upwind condition until the rotor speed is down to acceptable range. In the downwind condition, PT2511 provide a scheme to adjust the startup duty to make sure the back EMF won't damage the HV device. The startup duty is set according to the rotor speed with scale and an offset value.

StartDudy=(RotorSpeed>>DNWScale) + DNWInit, where ">>" means right shift

PARAMETERS SETTING


The other parameters are adjustable and wrote to internal OTP(One Time Programming) memory. PT2511 can be programmed two times through the I2C interface. VPP pin need apply +7.5V during the OTP programming.

I²C MICROPROCESSOR INTERFACE


To communicate with PT2511, the following control and status registers are accessible via I²C interface. I²C communicates with multiple devices by only two lines, **START** bit means a start condition; any transmission must start with it. **Device ID** is 7-bit device address identifier, each device owns only one address, and PT2511 is fixed to 0110100b. **Wr**

Rd issuing a read or write operation, **ACK** is acknowledge bit, perform in the receiver, to inform the transmitter the data is properly received or stop data transmitting. **Address** is PT2511's register number to be described in next section. **STOP** is stop bit; any sequence must end with it. The I²C write operation is byte write mode, and read operation is byte read mode as described in **Figure 12**. The current I²C protocol speed support up to 50 KHz.

I2C Byte Write

I2C Byte Read

Figure 12. I²C byte write and byte read timing.

REGISTER TABLE

Register table mapping for address 0x0~0x8

					Bit					Address
7	6		5	4	3		2	1	0	Hex
		Reser	ved			Р	WMS	FWRS1	FWRSØ	0
				PWM_3	12C					1
	FG_CNT[7:0]								2	
	M_Status[2	-		RDL	TSD		FG_C	CNT[10:8]		3
	Reserved SUMERR BLANKERR OCPL OCPH								4	
				Reser						5
				HVI		1	7			6
				EXPNUM	[7:0]		V			7
				Reserved		A			EXPNUM[8	8
				Bit						Address
7	6	5		4 TC1C+++	3	2	1		0	Hex
				TS1Step TD2M						21
[S1Step[8]	DNWScale	-[1:0]				TD1Ma>	<u> </u>			22 23
		-[]		TS2Step	7:0]		-			24
				RiseStep						25
		DNWI	nit[5:	0]			TS2Step	[8] Ris	eStep[8]	26
			4	FallStep	1[7:0]					27
				FallStep	2[7:0]					28
	Reserved		12	Dead	dTime		FallStep:	<mark>1[8]</mark> Fal	lStep2[8]	29
			-	Falls						2A
				StopD	uty					2B
	Resei	rved				Z	CTarget			2C
				Reser						2D
Filter	Max[9:8]					erved				2E
		long		FilterMa	x[/:0]					2F
HallPwrEn OCPLSlope PAAuto PASlope							30			
HallSel RSyncAng Reserved SyncAng							31			
reserved	CTR:	ico			SyncAng		CTFall			32
	CTR.	156		MaxExptNu	Im[7·0]		CIFAII			33
				Πάλεχμείου	,					34

			Reserved				
Reserved	MaxExptNum [8]		R	leserved			
			Reserved				
			Reserved				
HSMOS	HallCode	Reserved	SPDEN	Reserved	SF	DSEL	
Reserved							
			MaxPA				
			PAM10Hz				
			PAM20Hz		<u> </u>		
			PAM30Hz				
			PAM40Hz				
			PAM50Hz		V		
			PAM60Hz				
			PAM70Hz				
			PAM80Hz				
			PAM90Hz				
			PAM100Hz PAM110Hz	4			
			PAMII0HZ PAM120Hz	<u> </u>			
			PAM120H2				
			PAM140Hz				
			PAM150Hz				
Res	erved			CLKTrim			
			PRT_LVL				
		-OCP	HFLTR[7:0]				
		OCPLFLTR[5:0]			OCPHF	LTR[9:8]	
UF	WSel		R	leserved			
		UF	WNUM[7:0]				
Reserved		A REAL	MinDut	V			
FWRSW		Reserved	OVOTSEL		Reserved		
		Reserved		F	GDIV	XOREN	

REGISTER DESCRIPTION

Address 0x0~0x8 is system control registers, providing information such as system status, even direct control the PWM duty, forward or reverse, etc.

Address	Register Name		Description	Default	Unit	R/W
		Bit [7:3]	Reserved			
0x00	SYS_CTL1	Bit[2]	PWMS : 1 : select internal PWM duty control 0 : external VSP control	0		R/W
		Bit[1:0]	FWRS : FWR is controlled by 1x : external FWR pin $00_b : FWR is 0$ $01_b : FWR is 1$	2		
0x01	PWM_I2C	When PV	VMS set 1, PWM duty is controlled by this register	0	duty	R/W
0x02	FG_CNT[7:0]		FG_CNT[10:8] to get a 11 bit frequency counter ery one second	0	counter	R
		Bit[7:5]	M_Status, Motor status 000_b : Startup 001_b : Normal 010_b : PWMOff 100_b : LockOn 101_b : DeadLock			
0x03	SYS_CTL2	Bit[4]	RDL, normal operation status 0 : motor is in the normal state 1 : motor is not in the normal state			R
		Bit[3]	TSD signal from the VSEN pin 0 : Comparator result is correct 1 : Comparator result is not correct			
		Bit[2:0]	FG_CNT[10:8]			
		Bit[7:5] 🗸	Reserved			
		Bit[4]	SUMERR, OTP checksum error indicator. If the first byte is 0x5A, the checksum is generated automatically. 1 : OTP checksum is error 0 : OTP checksum is correct.			
0x04	SYS_CTL3		BLANKERR, OTP blanking check. 00 : Bank 0 and 1 is blank. 01 : Bank 0 is blank, bank 1 is not blank. 10 : Bank 0 is not blank, bank 1 is blank. 11 : Bank 0 and 1 is not blank. OCPL,			R
		Bit[1]	 1 : RF pin voltage exceed low level threshold. 0 : RF pin voltage is under low level threshold. 			

Address	Register Name		Description	Default	Unit	R/W
		Bit[0]	OCPH 1 : RF pin voltage exceed high level threshold. 0 : RF pin voltage is under high level threshold.			
0x06	HVID	Hardware	e version control ID	2		R
0x07	EXPTNUM [7:0]	The EXF	with EXPTNUM[8] to get a EXPTNUM[8:0] register. PTNUM will add one automatically when exception for example, OCPH or LockOn state happens.	0		R
0x08		Bit[7:1]	Reserved			
0,000		Bit[0]	EXPTNUM[8]	0		R

Address 0x21~0x5F is OTP parameters mapping registers, provide motor control related parameters.

Address	Register Name		Description	Default	Unit	R/W
0x21	TS1Step	TS1Step[TS1Step	with bit 7 of sub-address 0x23 to form 9-bit of 8:0] is the first stage slope before reaching TD1MAX in the ode. Please refer to Figure 7. Unit is ms	10	ms	R/W
0x22	TD2Max	TD2Max	is the maximum duty of the second stage startup. fer to Figure 7	50	duty	R/W
		bit [7]	TS1Step[8]			
0x23	TD1Max	bit[6:5]	DNWScale[1:0], a scale of current speed in Hz, for example, the current speed is 48Hz, DNWScale set to 0, then the initial duty is startup from 48>>(0+2)	0	scale	R/W
		bit[4:0]	TD1Max is the maximum duty of the first stage startup. Please refer to Figure 7.	3	duty	
0x24	TS2Step	TS2Step[TS2Step	with bit 1 of sub-address 0x26 to form 9-bit of 8:0] is the second stage slope before reaching TD2MAX in p mode. Please refer to Figure 7.	47	ms	R/W
0x25	RiseStep	Combine RiseStep RiseStep	with bit 0 of sub-address 0x26 to form 9-bit of	47	ms	R/W
0x26	Downwind startup	bit [7:2] bit [1]	DNWInit[5:0], Combine with DNWScale[1:0], a suitable initial force to startup the motor when motor in a forward running situation. TS2Step[8]	0	duty	R/W
		bit [0]	RiseStep[8]			
0x27	FallStep1	The first to Fallse	stage slope of slow down before the actual duty down t.	47	ms	R/W
0x28	FallStep2		ond stage slope of slow down before the actual duty StopDuty	47	ms	R/W
		Bit[7:5]	Reserved			
0x29	DeadTime Setting	Bit[4:2]	Dead time setting, range from 0.4us to 2.4us, suit for wide voltage operation. 0: 0.4us, 1: 0.8us, 2: 1.2us, 3: 1.6us, 4: 2.0us, 5~7: 2.4us		clock	R/W
	_	bit [1]	FallStep1[8]			
		bit [0]	FallStep2[8]			
0x2A	FallSet	The first	stage duty for the actual duty decrease to.	40	duty	R/W
0x2B	StopDuty	The sec	ond stage duty for the actual duty decrease to.	64	duty	R/W

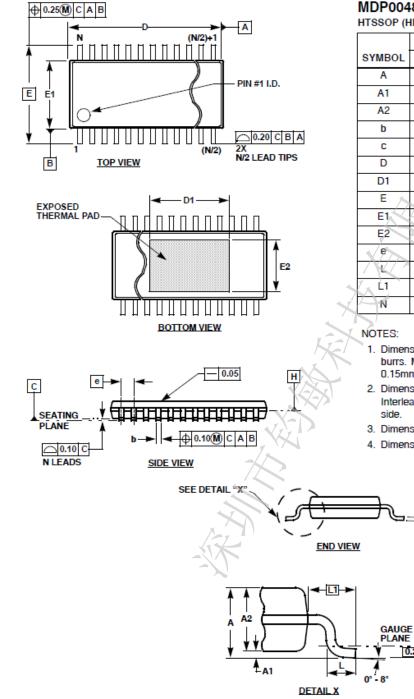
Address	Register Name		Description	Default	Unit	R/W	
0.420	ZOTorgot	Bit[7:4]	Reserved	C	alaak		
0x2C	ZCTarget	Bit[3:0]	Six-step startup count before entering normal state	6	clock	R/W	
0x2E	E FilterMax	Bit[7:6	Bit[7:6] FilterMax[9:8]		0	clock	R/W
UXZE	Filleriviax	Bit[5:0]	Reserved	0	CIUCK		
0x2F	FilterMax	FilterMax	is the deglitch time period both for the hall sensor/hall	100	clock	R/W	
		Bit[7]	HallPwrEn, HB power output control 0: Turn off HB output during power-off mode, 1: HB output is always enable.	0			
		Bit[6:5]	OCPLSlope, OCPL update rate selection when the OCPL event happens. 0: 6ms, 1: 12ms, 2:23ms, 4:47ms	2			
0x30	PASlope	Bit[4]	PAAuto, Phase leading adjustment selection, 0: manually, 1: auto	1		R/W	
	E		PASlope, when PAAuto set to 1, there are 16 slope curves selection according to the rotation speed. Please check figure 5 and 6 for further explanation. The sixteen slope of phase advance per 10Hz is 4.5, 3.93, 3.56, 3.18, 3.0, 2.8, 2.6, 2.43, 2.25, 2.06, 1.87, 1.68, 1.5, 1.12, 0.75, 0.37 degree.	7			
		Bit[7]	HallSel, Hall effect sensor type selection 0:Hall sensor IC, 1: Hall element	0			
0x31	RSyncAng	Bit[6:0]	Hall sensor synchronization angle for the reversion rotation.	45	1.5 deg	R/W	
0x32	SyncAng	Bit[6:0]	Hall sensor synchronization angle for the forward rotation	45	1.5 deg	R/W	
0x33	CTRise /CTFall	Bit[7:4]	Maximum time period before entering normal mode. If startup period exceed this period, lock-on number plus one and restart again.	2	sec.	R/W	
		Bit[3:0]	Rest time period between each startup.	1	sec.		
0x34	MaxExptNum	state. The	kimum exception number before entering dead-lock e exception include OCPH and lock-on. When entering k state, PT2511 release it only by system power on	20	times	R/W	
		Bit[7]	HSMOS, high side MOS type selection 0:NMOS, 1:PMOS	0			
	0x39 SPDCtrl	Bit[6]	HallCode, Hall effect sensor position 0: 60 degree spacing, 1: 120 degree spacing	0			
0x39		Bit[3]	SpdEn : 0: duty control voltage, 1: duty control speed, please check figure 1	0		R/W	
		Bit[1:0]	SpdSel, four different slope curve to choose maximum rotation speed 0:64Hz, 1: 128Hz, 2:512Hz, 3:1024Hz, please check Figure 1 for further explanation.	2			

Address	Register Name		Description	Default	Unit	R/W
0x3B	MaxPA	Maximur	n phase advance limitation	30	1.5 deg.	R/W
0x3C~ 0x4A	PAM10HZ~ PAM150HZ		advance adjusted manually from 10Hz to 150Hz g the rotation speed.	2,4,6,8,1 0,12,13, 15,17,18 ,20,21,2 3,24,25	1.5 deg	R/W
0x4B	CLKTrim	CLKTrim	[5:0] provide 6 bit for precise basic clock output.	35	level	R/W
		Bit[7:4]	Over voltage/temperature protection level(VPRTL) selection, range from 1.0V~2.24V(0x0~0xE), 15 level settings.	0xD		D 444
0x4C	PRT_LVL	Bit[3:0]	Over current protection level(OCPL/OCPH) selection, range from 0.16V/0.26V to 0.41V/0.69V, 16 level settings.	0x0	level	R/W
0x4D	OCPHFiltr [9:0]		with bit[1:0] of sub-address 0x4E, to form 10-bit of time period for the OCPH signal, range from 0.4us to	256	clock	R/W
0x4E	OCPLFiltr [5:0]	Bit[7:2] Bit[1:0]	Deglitch time period for the OCPL signal, range from 0.4us to 25.6us. OCPHFiltr[9:8]	8	clock	R/W
0x4F	UWSel	Bit[7:6]	UPWSel : Upwind startup setting, the motor brake until the speed reach: 0:4Hz, 1:6Hz, 2:8Hz, 3:12Hz, then start up with six-step till the motor in the forward direction.	0		R/W
0x50	UPWNum		Reserved n add 1 if the low-side braking time exceed n*0.5 second	20	number	R/W
0x51	MDuty	Bit[7] Bit[6:0]	Reserved MinDuty : The motor is activated until the duty setting exceed MinDuty	0	duty	R/W
0x52	OVOTSEL/	FWRSW, direct set PT2511 to 0: forward rotation, 1: Bit[7] reverse rotation in the 28 pin SSOP package, This bit		0		R/W
	FWRSW	Bit[4]	OVOTSEL, 1: over temperature selection, 0: over voltage selection.	0		1.7.7.7
0x53	FGCTRL	Bit[7:3] Bit[2:1]	Reserved FGDiv : FG divide setting, 00b:1, 01b:2, 10b:4, 11b:8	00 _b		R/W
		Bit[0]	XOREn : FG XOR enable setting, 0:disable, 1:enable	Ob		

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min.	Max.	Unit
Supply voltage range	V _{DD}	5	30	V
I/O voltage	-	-0.3	5	V
Operating temperature range	TA	-40	+85	°C
Storage temperature range	T _{STG}	-55	+125	°C

ELECTRICAL CHARACTERISTICS


Nominal conditions: $V_{DD} = 24.0V$ GND=0 T_A = +27°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
General Characteristics		· · · ·				
Supply voltage	Vdd		7	24	28	V
Current consumption	IDD			5	8	mA
Regulator output voltage*	V_{REG}		4.98	5	5.02	V
Regulator output current	I _{REG}	(V_noload - V_load20ma)/ V_noload < 5%		20		mA
Parameters Setting		1				
Low protection voltage**	Vprtl	VSEN pin	2	2.0		V
High protection voltage	Vprth	VSEN pin	2.0	2.5		V
Over current protection voltage level low (OCPL, current limit)***	V _{OCPL}	RF pin		0.15		V
Over current protection voltage level high (OCPH, lock protection)	Vocph	RF pin		0.24		V
External oscillator	Fosc_1ĸ	OSCC= 470pF		1		KHz
External oscillator range	Fosc_c	OSCC pin	0.1	-	10	KHz
Integrated MOSFET						
RDSON Series resistance (HS + LS)	Rdson	VDD = 24 V; VG = 28.5 V; lout = 1 A		0.45		Ω
Swing-head Driver Characteristics						
Voltage drop in full bridge driver		SWO1, SWO2, V _{DD} =15V, I=200mA		1	2	V
Hall Element Amplifier Characterist	ics					
Common-mode input range	V _{HCM}	Using hall element	+0.5		V _{REG} - 0.5	V
Hall input sensitivity	Vhsen			80		mV
HB output voltage	Vнв	Iнв= 10mA	4.5			V
I/O Interface						
Logic output high level	Vон	FG, RD	4.0	4.5	5.5	V
Logic output low level	Vol	FG, RD		0	0.3	V
DC for speed control input range	VDC	DC input (VSP pin)	0.5		3.3	V
PWM input high level	VPWMH	PWM input (VSP pin)	3.5			V
PWM input low level	VPWML	PWM input (VSP pin)			0.3	V
PWM input clock	FPWM_IN	PWM input (VSP pin)	15	20	25	KHz
THERMAL SHUTDOWN						
Shutdown temperature	TSDN			155		°C
Hysteresis window	TSDN_HYS			40		°C

* V_{REG} is adjustable with I²C interface.
 **High and Low protection voltage can be worked as OVP(Over Voltage Protection) trigger voltage, and it is adjustable with I²C interface
 ***V_{OCPH}, V_{OCPL} is adjustable with I²C interface

PACKAGE INFORMATION 28 Pins, HTSSOP 173MIL

MDP0048 HTSSOP (HEAT-SINK TSSOP) FAMILY

		MIL	LIMETE	RS		
SYMBOL	14 LD	20 LD	24 LD	28 LD	38 LD	TOLERANCE
Α	1.20	1.20	1.20	1.20	1.20	Max
A1	0.075	0.075	0.075	0.075	0.075	±0.075
A2	0.90	0.90	0.90	0.90	0.90	+0.15/-0.10
b	0.25	0.25	0.25	0.25	0.22	+0.05/-0.06
С	0.15 /	0,15	0.15	0.15	0.15	+0.05/-0.06
D	5.00	6.50	7.80	9.70	9.70	<u>+</u> 0.10
D1	3.2	4.2	4.3	5.0	7.25	Reference
E	6.40	6.40	6.40	6.40	6.40	Basic
E1	4.40	4.40	4.40	4.40	4.40	<u>+</u> 0.10
E2	3.0	3.0	3.0	3.0	3.0	Reference
e	0.65	0.65	0.65	0.65	0.50	Basic
	0.60	0.60	0.60	0.60	0.60	<u>+</u> 0.15
(L1	1.00	1.00	1.00	1.00	1.00	Reference
N	14	20	24	28	38	Reference
2						Rev. 3 2/07

1. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.

2. Dimension "E1" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm per

3. Dimensions "D" and "E1" are measured at Datum Plane H.

4. Dimensioning and tolerancing per ASME Y14.5M-1994.

Notes :

1. Refer to JEDEC MO-137

2. Unit : mm

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian, Taipei 23145, Taiwan Tel: 886-2-66296288 Fax: 886-2-29174598 http://www.princeton.com.tw

REVISION HISTORY

Date	Revision	Modification	Author
08/10/2016	PT2501 PRE1.2	 Add OVP/OTP/OCP description and registers. VOCPL from 0.3 to 0.16, VOCPH from 0.5 to 0.26 Add 0x0~0x8 registers description Add I2C diagram and timing as PT2502 Update some analog spec 	Vincent
08/12/2016	REF 1.0	 Reference from PT2501 PRE1.2 Initial Version of PT21511 	Warren

<u>21.</u>