
MW922 InSb Hall Element

Ultra High-sensitivity InSb Hall element

Thin-type SIP Package

Shipped in Bulk by Pack (500Pcs devices per pack)

Dimensional Drawing (Unit MM)

Absolute Maximum Rating

Operating Temperature Range -40°C ~ 110°C Storage Temperature Range -40°C ~ 125°C Maximum Input Current I_{cmax} [mA] 10mA

Electrical Characteristic (RT=25°C)

Copy Right Reserved

	Table 1. Ele	ectrical Characteristics c	of MW92	2		
ltem	Symbol	Test Condi.	Min.	Тур.	Max.	Unit
Hall Voltage	K	B = 50mT, V _C =1V T _a = RT	310		415	mV
Input Resistance	R _{in}	\boldsymbol{B} = 0mT, \boldsymbol{I}_{c} = 0.1mA \boldsymbol{T}_{a} = RT	240		550	Ω
Output Resistance	R _{out}	\boldsymbol{B} = 0mT, \boldsymbol{I}_{c} = 0.1mA \boldsymbol{T}_{a} = RT	240		550	Ω
Offset Voltage	V _{os}	\boldsymbol{B} = 0mT, \boldsymbol{V}_{C} = 1V \boldsymbol{T}_{a} = RT	-7		+7	mV
Temp. Coeffi. of $V_{\rm H}$	$ \alpha V_{H} $	$B = 50 \text{mT}, I_{\text{C}} = 1 \text{mA},$ $T_{\text{a}} = 0^{\circ}\text{C} \sim 40^{\circ}\text{C}$		1.8		%/°C
Temp. Coeffi. of R in	α R _{in}	$B = 50 \text{mT}, I_{\text{C}} = 5 \text{mA},$ $T_{\text{a}} = 0^{\circ}\text{C} \sim 40^{\circ}\text{C}$		-1.8	N.	%/°C
Dielectric strength		100V D.C	1.0			MΩ

 $V_{\rm H} = V_{\rm H-M} - V_{\rm os}$ in which $V_{\rm H-M}$ is the Output Hall Voltage, $V_{\rm H}$ is the Hall Voltage and $V_{\rm os}$ is the offset Voltage under the identical electrical stimuli.

2.
$$\alpha V_H = \frac{1}{V_H(T_1)} \times \frac{V_H(T_3) - V_H(T_2)}{(T_3 - T_2)} \times 100$$

3.
$$\alpha R_{in} = \frac{1}{R_{in}(T_1)} \times \frac{R_{in}(T_3) - R_{in}(T_2)}{(T_3 - T_2)} \times 100$$

 $T_{1=20^{\circ}C}, T_{2=0^{\circ}C}, T_{3=40^{\circ}C}$

Copy Right Reserved

JZWI-DS-011 Version 1.0

Classification of Output Hall Voltage ($\textit{V}_{\textrm{H}}$)

Table 2. Classification of Hall Voltage					
Rank	ℓ _H [mV]	Conditions			
G	310 ~ 370	B=50mT, V c=1V			
н	360 ~ 415				

Characteristic Curves

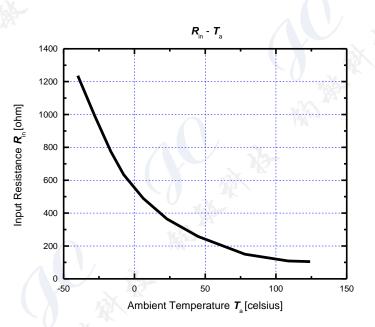
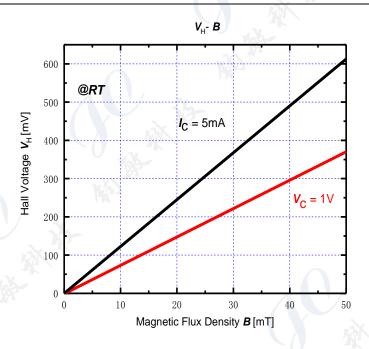



Figure 1. Input resistance R_{in} as a function of ambient temperature T_{a} .

Copy Right Reserved

JZWI-DS-011 Version 1.0

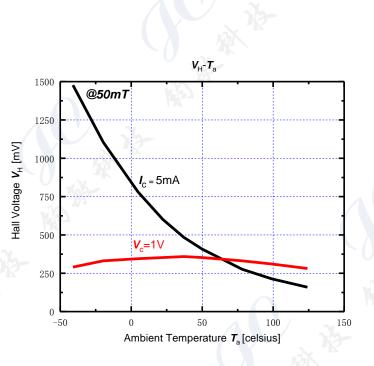


Figure 3. Hall voltage V_{H} as a function of ambient temperature T_{a} .

Copy Right Reserved

JZWI-DS-011 Version 1.0

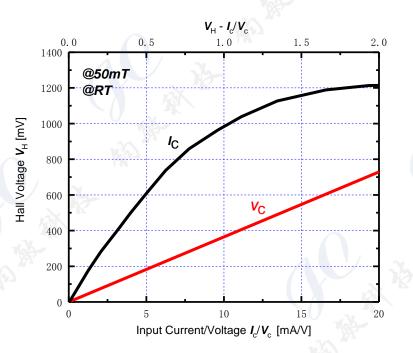


Figure 4. Hall voltage $V_{\rm H}$ as a function of electrical stimuli $I_{\rm c}/V_{\rm c}$.

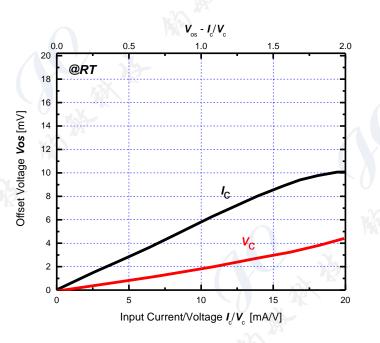


Figure 5. Offset voltage V_{os} as a function of electrical stimuli I_c/V_c .

Copy Right Reserved

JZWI-DS-011 Version 1.0

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise. (Ex; Relative Humidity; over 40%RH).
- Wearing the antistatic suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5 to 35°C, 40 to 60%RH) after the unsealing of MBB. Using self-sealer is highly recommended. Keeping products away from chlorine and corrosive gas.
- For storage longer than 2 years, it is recommended to store in nitrogen atmosphere with MBB sealed. Oxygen and H₂O of atmosphere oxidizes leads of products and lead solder ability get worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.

Copy Right Reserved

JZWI-DS-011 Version 1.0