

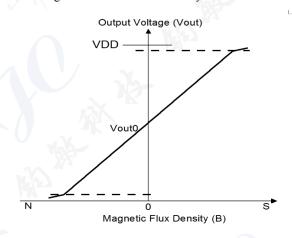
GS302SA-3 Programmable Linear Hall-Effect IC

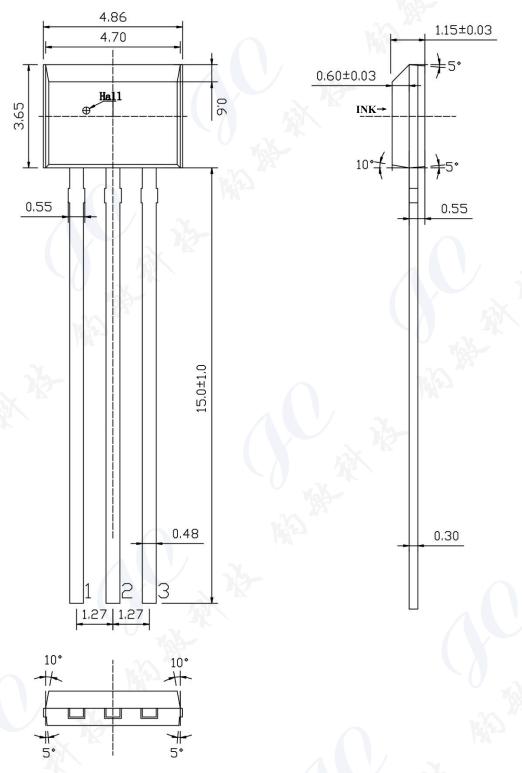
- GaAs + Si Hybrid Programmable Linear Hall-Effect IC
- Single power supply: VDD $3V \sim 5.5V$
- Analog Fixed or Ratiometric Output
- Wide ambient Temperature Range : Ta -40°C ~ 125 °C
- Quick response for magnetic field with wide bandwidth
- Programmable via One Wire Interface at Vout Pin

Output Characteristics

Pinning	Pinning Define				
1	VDD				
2	GND				
3	VOUT				

Figure 1. Definition of sensitivity direction




Figure 2. Output Characteristics of GS302SA-3

Matrix Opto Co., Ltd

-GS302SA-3 Programmable Linear Hall-Effect IC-

Dimensional Drawing (Unit MM)

 1 Unmarked tolerances are controlled according to ± 0.05 mm while the angel tolerance is $\pm 1^\circ$.

Copy Right Reserved

JZWI-DS-055 Version 1.0

Matrixopto.Co.,Ltd is the owner of the trademarks used in this document, which has the exclusive right to prevent any third parties not having the owner's consent from using in the course of trade identical or similar signs for goods or services where such use would result in a likelihood of confusion.

Matrix Opto Co., Ltd

-GS302SA-3 Programmable Linear Hall-Effect IC-

Absolute Maximum Rating

Table 1 . GS302SA-3 Working conditions

Characteristics	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage	$\mathbf{V}_{ ext{DD}}$	$T_a = 25^{\circ}C$	-0.3		6.5	V
Output Current	Iout	$T_a = 25^{\circ}C$	-45		45	mA
Analog output	Vout /Vbias	$T_a = 25^{\circ}C$	0.4		V_{DD} -0.4	V
Storage Temp.	Ts		-40		150	$^{\circ}$
Operation Temp.	Ta	1	-40		125	$^{\circ}\mathbb{C}$

Matrix Opto Co., Ltd -GS302SA-3 Programmable Linear Hall-Effect IC-

Operation Conditions

Table 2. Electric and magnetic characteristics Ta=-40 to 85 ℃

Characteristics	Symbol	Condition	Min	Туре	Max	Unit
Supply Voltage	$V_{ m DD}$	Ta = 25 °C	3		5.5	V
Current Consumption	I_s	In Programming @ Ta = 25 °C			33	mA
		In normal operation @Ta=25°C		6.5	11	mA
Sensitivity Range	V_{hrange}	Ta = 25 °C	0.5		200	mV/mT
Response Time	Tr	M1 C _{load} =20pF			3	μs
Signal bandwidth	B_{w}	14.12		250	500	KHz
Load Capacitance	CL	Ta = 25 °C		20p	1n	F
Bias Voltage	V_{bias}	Ta = 25 °C	2.490		2.510	v
Quiescent Voltage of Differential Output at Ta 25°C	V ₀ -V _{bias}	M1	-0.01		0.01	V
Quiescent Voltage of Differential Output In -40°C~85°C	$ m V_{0} ext{-}V_{bias}$	M1	-0.02		0.02	V
Quiescent Voltage (fixed output) Ta=25°C	V_0	M1	2.490		2.510	V
Quiescent Voltage (fixed output) In -40°C~85°C	V ₀	M1	2.480		2.520	V
Sensitivity drift through	ΔS/S(25°C)	M1 In -40°C~25°C	-1.5		1.5	%
temperature (fixed output)		M1 In 25 °C~85 °C	-1.5		1.5	%
Output Cotunation Valtage	Vout-SatH	MAD.	V _{DD} -0.5			V
Output Saturation Voltage	Vout-SatL				0.5	V
Error of sensitivity (rationmetric output) In -40°C~85°C	Serro	V _{DD} in range 4.75~5.25V	-0.4	1	0.4	%
Error of Quiescent Voltage (rationmetric output) In -40°C~85°C	$ m V_{0erro}$	V _{DD} in range 4.75~5.25V	-0.3		0.3	%
Linearity Error	ρ	M1	-0.5		0.5	%

Note:

M1 : V_{DD} =5V , V_0 =2.500V or V_{bias} , V_{out} = V_0 ±2.000V@±20mT , sensitivity : 10 mV/GS ;

Copy Right Reserved

JZWI-DS-055 Version 1.0

Matrixopto.Co.,Ltd is the owner of the trademarks used in this document, which has the exclusive right to prevent any third parties not having the owner's consent from using in the course of trade identical or similar signs for goods or services where such use would result in a likelihood of confusion.

Matrix Opto Co., Ltd

-GS302SA-3 Programmable Linear Hall-Effect IC-

Characteristics Definitions

1. Sensitivity V_{hrange} [mv/mT].

Sensitivity is defined as the slope of the approximate straight line calculated by the least square method, using data of OUT voltage (Vout) when the magnetic flux density (B) is swept within the range of input magnetic flux density (Bin).

2. Linearity Error ρ [%F.S.].

Linearity error is defined as the ratio of the maximum perpendicular deviation (MPD) to the full scale (F.S.), where MFD is the maximum difference between the OUT voltage (Vout) and the approximate straight line calculated in the sensitivity definition. Definition formula is shown in below:

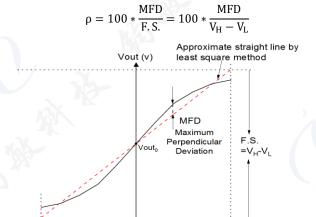
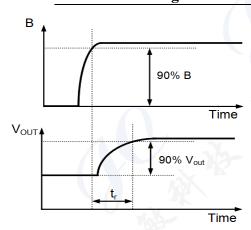


Figure 3. Output characteristics of GS302SA-3

3. Ratiometric output error of sensitivity V_{0erro} [%] and rationmetric output error of Quiescent voltage S_{erro} [%]. The quiescent voltage V_{out0} of the GS302SA-3 is constant, which means that it does not vary with the VDD. Error of Quiescent Voltage is defined as the difference between the Vh (or V_{out0}) when the VDD is changed from 5.0v to VDD₁ (4.75v<VDD₁<5.25v or 4.5v<VDD₁<5.5v). Definition formula is shown in blow:

$$S_{erro} = \left[\frac{Vout(VDD)}{Vout(5v)} - \frac{VDD}{5} \right] * 100$$

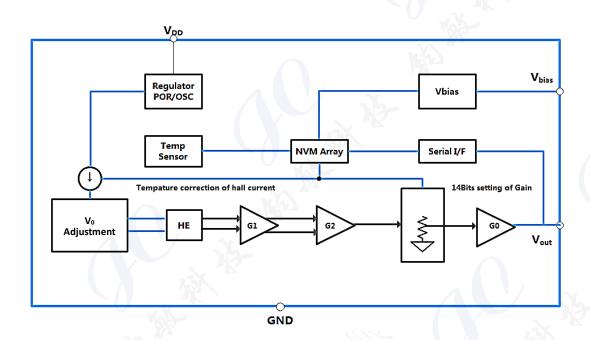

$$V_{0erro} = \left[\frac{V_0(VDD)}{V_0(5v)} - \frac{VDD}{5} \right] * 100$$

4. Rise response time $T_r [\mu s]$.

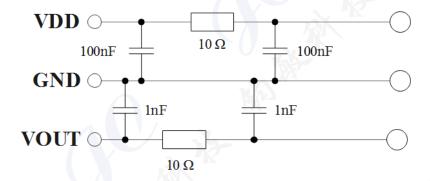
Rise response time is defined as the time delay from the 90% of input magnetic field (B) to the 90% of the OUT voltage (Vout) under the pulse input of magnetic flux density.

Matrix Opto Co., Ltd -GS302SA-3 Programmable Linear Hall-Effect IC-

Rise response time (T_r)


Figure 4. Definition of response time

5. Output Saturation Voltage Vout-SatH and Vout-SatL.


Output saturation voltage is defined as the saturated output at a fixed output current. $V_{\text{out-SatH}}$ is defined as the chip's output voltage when the output current is -2 or 0.5mA in the positive magnetic field, and $V_{\text{out-SatL}}$ is the chip's output voltage when the output current is -2 or 0.5mA in the negative magnetic field.

Matrix Opto Co., Ltd -GS302SA-3 Programmable Linear Hall-Effect IC-

Function Block Diagram

Application Circuit

