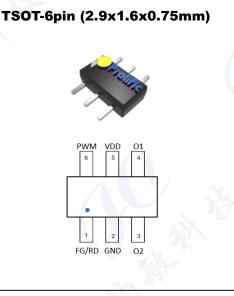
DC Brushless Motor Driver IC

PL396V-A Single-phase Smart Fan Driver **PWM speed control**


Package:

Applications

Automotive cooling fan

Features

- Built-in high sensitivity(10G) hall sensor
- PWM/DC voltage speed control
- PWM open loop and closed loop speed control
- PWM programmable speed curve
- PWM Soft Switching silent control option
- Kickback commutation control and Low EMI
- Soft Start control
- Lead/Lag angle control
- FG/RD open drain output
- Quick start
- Protections
- Locked protection and automatic restart
- Current limit/Over current/Short circuit protection
- Over temperature protection
- Jump start/load dump/Over voltage protection
- Built-in Zener diode
- High balance and low thermal drift magnetic sensing
- Low power consumption and high driving efficiency
- I2C programming
- AEC Q100 QTP

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Conditions	Rating	Units
Supply voltage	V _{DD}	The	-0.3~40	V
Max. output voltage (O1, O2)	Vomax	N A	-0.3~V _{DD} +0.3	V
Max. output current (O1, O2)	Іомах	1 M	I _{OCP}	mA
Max. FG/RD output voltage	VFG/RD MAX		-0.3~30	V
Max. FG/RD output current	IFG/RD MAX		10	mA
Max. input voltage (PWM)	VINMAX		-0.3~30	V
Junction temperature range	Тј		-40~165	°C
Storage temperature	Ts		-55~165	°C
1. Should not exceed Pdmax		•		112

.: Should not exceed Pdmax

◆ All PROLIFIC products described or contained herein do not have specifications that can handle applications require extremely high levels of reliability, such as life-support systems, aircraft control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your PROLIFIC representative nearest you before using any PROLIFIC products described or contained herein in such applications.

PROLIFIC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, the rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all PROLIFIC products described or contained herein.

PROLIFIC TECHNOLOGY INC.

7F, No.48, Sec.3, Nan Kang Rd., Nan Kang, Taipei, 115, Taiwan.

Preliminary

-1-

Electrical Characteristics (T_J=25°C, V_{DD}=12V; unless otherwise noted)

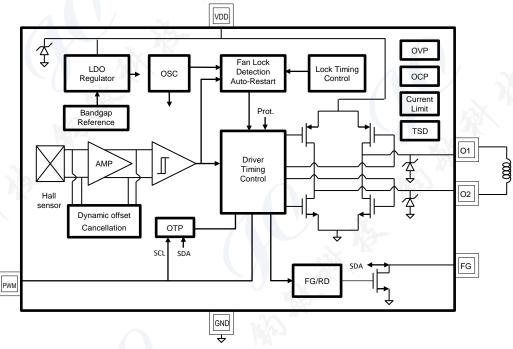
Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Units
Supply Voltage	Vdd		3.2		32*	V
Over Voltage Protection threshold	Vovpx	In V _{DD} rising OTP setting	-	17~35		v
Over Voltage Protection Hysteresis	Vovp_hys	In V _{DD} falling		1		v
Over Current Protection	I _{OCP}	XX	1.6	1.8	2	А
Over Current de-bounce time	tocd	141-2		0.5		uS
Outrast On Desistance		TJ=25°C,VDD=12V, IO=0.5A	1	1.5	2	ohm
Output On Resistance	R _{DS(On)}	T」=25℃,V _{DD} =3.5V, I₀=0.3A	1.1	1.7	2.6	ohm
(High side+ Low side)		TJ=150°C,VDD=12V,Io=0.5A		2.2		ohm
Supply Current	I _{DD}	Output open		3.5	5	mA
FG(SDA) input H voltage	Vihsda	I2C mode	2		N	v
FG(SDA) input L voltage	Vilsda	I2C mode	GND	0	0.5	V
FG/RD output sink voltage	V _{DSFG/RD}	I _{FG/RD} =5mA		0.1	0.3	V
FG/RD output leakage current	I _{FG/RD_Leak}	V _{FG} =12V		0.1	1	uA
PWM digital input H voltage	VIHPWM		2			V
PWM digital input L voltage	VILPMM		GND		0.5	V
PWM input frequency	f _{PWMI}		0.03		100	KHz
PWM input current	Ipwm	V _{PWM} =0V	-200	-150	-100	uA
PWM analog input voltage range (0%~100%)	Vsp	VSP mode	0.5		2.4	v
PWM output frequency	f _{PWMO}	~	20	25	30	KHz
Current limit	ICLx	OTP setting		250~1050	(mA
Current limit de-bounce time	tcld			1.5		uS
Lock detection time	Тьоск	OTP setting	0.32		1.6	s
Lock protection on time	TON	OTP setting	0.16		1.28	S
Lock protection off/on ratio	T _{OFF} /T _{ON}	OTP setting	6		20	N.
Thermal Protection Temperature	TJ _{TSD}	In temperature rising		165	N	°C
Thermal Protection Hysteresis	ΔT _{TSD}	In temperature falling		25		°C
Magnetic Characteristics (T	=25°C, Vנ	DD=12V, unless otherwise r	noted)	1		
Operate Point	Вор		5	10	25	G
Release Point	B _{RP}	-0	-25	-10	-5	G
Hysteresis	Внуз	0.	10	20	40	G

Preliminary

Truth Table

Parameter Test Condition	01	02	Rotation Mode		Lock Mode		
Parameter	lest condition	01	02	FG	RD	FG	RD
North Pole	B <brp< td=""><td>н</td><td>L</td><td>L</td><td>L</td><td>Н</td><td>н</td></brp<>	н	L	L	L	Н	н
South Pole	B>Bop	L	Н	н	L	Н	н

South Pole O1 Output = High



General Specifications

The PL396V-A is a variable speed smart fan driver IC with built-in Hall sensor. The built-in dynamic offset cancellation of pre-amplifier stage achieves optimal symmetrical magnetic sensing. The output driver provides a PWM soft switching to eliminate acoustic noise. Further, the lead/lag angle commutation phase control to achieve optimal motor efficiency and EMI performance. PL396V-A is also featuring with jump start and load dump protection according to ISO16750-2. This IC is an optimal solution with PWM speed control for Automotive DC brushless fan motor application.

The Driver IC architecture block diagram is shown in Fig. 1.

Hall Sensor

This Hall-effect sensor IC integrates sensor, pre-amplifier with dynamic offset cancellation and the hysteresis comparator in single chip. The hysteresis characteristic is illustrated in Fig. 2 and the threshold of the magnetic flux density is +/-10 Gauss.

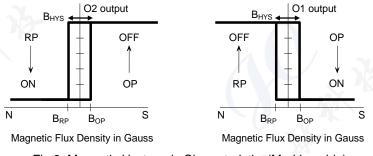
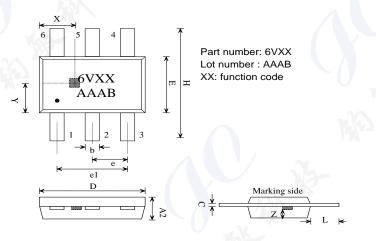


Fig 2. Magnetic Hysteresis Characteristics(Marking side)

Preliminary

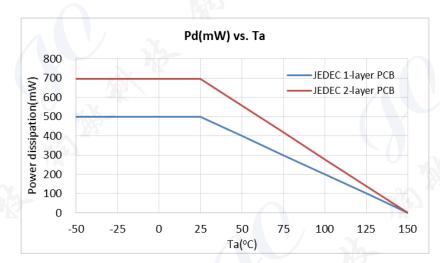

Date: Nov-2023

Pin Description and Package Information

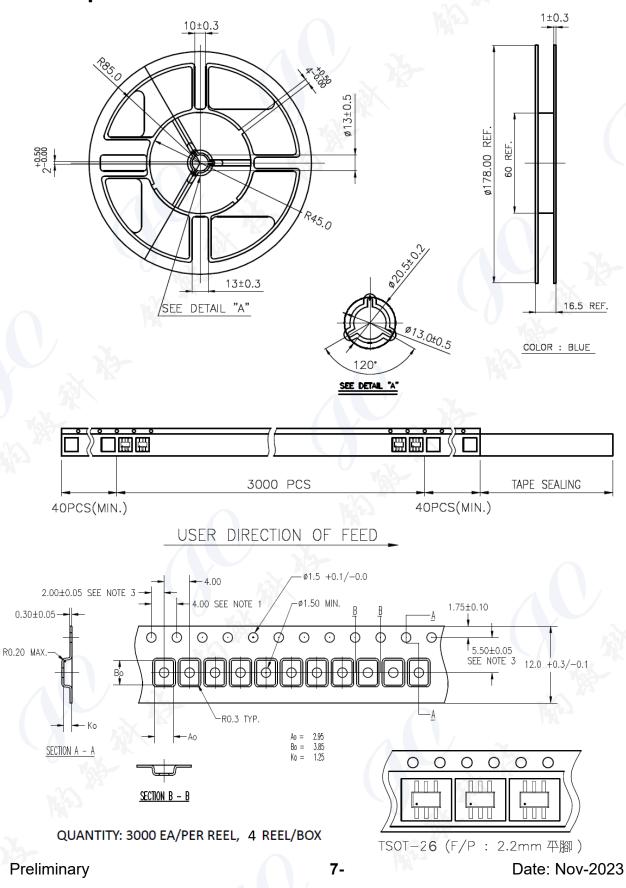
TSOT-6pin (2.9x1.6x0.75mm)

NAME	Pin	Description
FG/RD(SDA)	1	FG/RD output pin; SDA: programming mode: Data I/O
GND	2	DC ground
02	3	Second output pin
01	4	First output pin
VDD	5	DC power supply
PWM(SCL)	6	PWM input pin; SCL: programming mode: Clock input.

SYMBOLS	DIMENSIONS IN MILLIMETERS(mm)				
SYMBOLS	MIN	NOM	MAX		
A2	0.70	0.75	0.775		
b	0.35	-	0.50		
С	0.10	-	0.20		
D	2.80	2.90	3.00		
Е	1.50	1.60	1.70		
Н	3.60	3.80	4.00		
e	0.80	0.95	1.10		
e1	1.70	1.90	2.10		
L	0.95	1.10	1.25		
SENSOR LOCATION					
Х	0.85	1.00	1.15		
Y	0.65	0.85	0.95		
Z	0.20	0.25	0.30		


Preliminary

Thermal resistance


TSOT-6pin

Parameter	Symbol	Conditions	Rating	Units
Junction to ambient thermal resistance	θJA_1s0p	TSOT-6L, 1-layer PCB, JEDEC	240	°C/W
Junction to case thermal resistance	θις	standard test board, still-air	15	°C/W
Junction to ambient thermal resistance	θJA_2s0p	TSOT-6L, 2-layer PCB, JEDEC	180	°C/W
Junction to case thermal resistance	θις	standard test board, still-air	15	°C/W

Carrier Tape & Reel specifications TSOT-6pin

Revision history table

Revision Date		Description of Revision
2023/11/27	• First release.	

- Specifications of any and all PROLIFIC products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- PROLIFIC Technology Inc. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any and all PROLIFIC products described or contained herein fall under strategic products (including services) controlled under the Foreign Exchange and Foreign Trade Control Law of Taiwan, such products must not be exported with our obtaining export license from the Ministry of international Trade and Industry in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of PROLIFIC Technology Inc.
- Any and all information described or contained herein are subject to change without notice due to
 product/technology improvement, etc. When designing equipment, refer to the Delivery Specification for
 the PROLIFIC product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. PROLIFIC believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

Specifications and information herein are subject to change without notice.

Preliminary